
LDAS Driver Design

Introduction

The modification of the current LDAS driver is intended to make use of the advanced
features of fortran 90 programming language, which are especially useful for object
oriented programming. The latest standard, Fortran 2000 is expected to provide full
object oriented features and porting over to Fortan 2000 will be easier if the current
code is designed in the object oriented fashion. Further, the modular structure of the
code and the use of object oriented features would facilitate easy migration over to
another object oriented language such as C++.

Fotran 90 provides a number of features which appear to be useful for OOP.
Almost all the features of an object oriented language such as C++ can be emulated
in fortran with the exception of dynamic binding. However Decyk et al. [1] presents
techniques to simulate dynamic binding in Fortran 90. These techniques are employed
in this modification of the ldas driver.

Modified LDAS Driver

A snippet of the “old” ldas main driver is shown in Figure 1. It can be seen that
there are lot of “if” statements for each conditions, be it a land surface model related
or boundary conditions related. The modified driver 2 eliminates these conditionals,
and delegates the actual work to the respective modules (see Figure 3). A future
modification of the code such as inclusion of a new land surface model, or a new
forcing will not necessitate a change in the main driver. The “hook points” for the
incorporation of new procedures are well defined through different interfaces. For
example, the incorporation of a new land surface model such as VIC would involve
the modification of the subroutines in the lsm−module.

The current design uses many object oriented concepts such as derived data types,
data encapsulation, function overloading, dynamic binding, and classes. The interface
statements in Fortran90 allow procedures in different classes (modules) to have same

1

......

......

!=== Get LDAS Base Forcing

if(ldas%feta.eq.1) call geteta(ldas,grid)

if((ldas%fncep.eq.1).or.(ldas%fnasa.eq.1))

& call getncep(ldas,grid)

if(ldas%fgdas.eq.1) call getgdas(ldas,grid)

if(ldas%fgeos.eq.1) call getgeos(ldas,grid)

if(ldas%fr_ecmwf.eq.1) call getreanlecmwf(ldas,grid)

......

......

!=== Call CLM Main Subroutine

if(ldas%rclm.eq.1)then

do t=1,ldas%nch

call clm_main(clm(t),drv%day)

enddo

endif

!=== Call NOAH LSM Main Subroutine

if(ldas%rnoah.eq.1)then

do t=1,ldas%nch

call noah_main(t,ldas,tile(t),noah(t))

enddo

endif

Figure 1: The “old” ldas main driver

function names. Since dynamic binding has to be emulated in software, it requires
the creation of appropriate polymorphic classes.

References

[1] V. K. Decyk, C. D. Norton, and B. K. Szymanski. How to express c++ con-
cepts in fortran 90. Technical report, Renesselaer Polytechnic Institute, Scientifc
Computation Research Center.

2

.....

call LIS_lsm_init(ldas_drv)

call LIS_baseforcing_init(ldas_drv)

.....

.....

call LIS_get_base_forcing(ldas_drv)

....

....

!==== Tile Loop & Run Models

do t=1, getnch(ldas_drv)

call LIS_lsm_main(t,ldas_drv)

enddo

....

....

Figure 2: The “modified” ldas main driver

3

ldas driver

use ldasdrv_module
type(ldasdrvdec)::ld

LIS_baseforcing_init(ld)

....

....

Module ldasdrv_module

interface domain_init
interface LIS_lsm_init
interface LIS_baseforcing_init

interface LIS_setuplsm
interface LIS_lsm_main
interface LIS_lsm_out
interface LIS_lsm_restart

.........

.........

.........

contains

subroutine ld_lsm_restart

subroutine ld_domain_init
subroutine ld_baseforcing_init

subroutine ld_setuplsm
subroutine ld_lsm_main
subroutine ld_lsm_out

.........

use ldas_module
use lsm_module
use baseforcing_module

subroutine ld_lsm_init

Module lsm_module
use tile_module
use noah_module
use clm_module

.........

interface lsm_init
interface setuplsm
interface lsm_main
interface lsm_out

.........

contains

subroutine init
subroutine lsm_setup

.........

type(ldasmodel)
type(ldasforcing)
type(ldasparameters)
type(ldasruntime)
type(ldastime)
type(ldasoutput)
type(ldasassimil)

type(ldasdomain)

Module ldas_module
use tile_module

Module time_module

type(ldastime)

ticktime(..)
date2time()

.....

.....

LIS_lsm_init(ld)

Module baseforcing_module

use grid_module
........

interface baseforcing_init
itnterface get_base_forcing

........
contains

subroutine forcing_init
subroutine get

........

Module tile_module

type tiledec

Module noah_module

type noahdec

Module clm_module

 type clmdec

Module grid_module

type griddec

interface LIS_allocate_tiles

Figure 3: Design of the LDAS driver and the delegation of function calls

4

